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Recent studies have shown that cation-π interactions, the
electrostatic binding between a cation and theπ ring of phenyl-
alanine (Phe), tyrosine (Tyr), and tryptophan (Trp), are common
motifs in protein structures.1 This type of noncovalent interaction
has been hypothesized to play important roles in molecular
recognition.2 In particular, Na+/K+ cation-π interactions are
implicated in the biological function of specific enzymes and the
selectivity of Na+/K+ ion channels.3

Biologically, it is well-known that amino acids exist in the
“free-acid” and “dipolar” forms.4 Cations can stabilize the
negatively charged carboxylate end of the dipolar amino acid to
form stable metalated zwitterionic structures (ZW), as opposed
to the charge-solvation (CS) forms. Theintrinsic and relative
stability of the CS and ZW forms, in the absence of solvent, has
been the subject of many theoretical5 and experimental6 investiga-
tions. Williams and co-workers first demonstrated that mainly
due to the high basicity of the guanidine side chain, arginine is
in the ZW form when protonated in the gas phase.7a Later, it was
shown that alkali metal (Na, K, Rb, and Cs)-cationized arginine
is also in the ZW form.7b Recently, amino acids with proton
affinities larger than 217 kcal mol-1, including Phe (PA) 220.6
kcal mol-1), is predicted to be in the ZW form when sodiated.8

The effect of cation-π interactions on the relative stability of
CS versus ZW forms of metal-cationized amino acids has not
been considered previously. Recent findings indicate that the
phenyl-π face is, in fact, one of the binding sites involved in the
Na+/K+ bound complexes of Phe, Tyr, and Trp.9 With these

considerations in mind, we adopt Na+ and Phe as a prototype to
elucidate the possible roles of cation-π interaction in determining
the relative stability of CS and ZW forms of metal-cationized
aromatic amino acids in the gas phase.

We carried out systematic theoretical studies of the Na+-Phe
complex10 and found that Na+ may interact with Phe via eight
CS and two ZW modes11 of binding (Figure 1). The most stable
mode of binding, in agreement with that determined by Dunbar,9

is a tridentate mode (denoted as CS1) where the Na+ interacts
simultaneously with phenyl (π), amide carbonyl (CdO), and the
amino group (NH2) at the N-terminus. Despite highly strained
(largest deformation energy,Edef, among all CS species),12 the
tridentate CS1 mode of binding is still the most stable, indicating
that the interaction between the cation and theπ ring is, in general,
highly stabilizing.
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Figure 1. Schematic representation of [Na+-Phe] complexes. Charge-
solvation and zwitterionic structures are abbreviated as CS and ZW,
respectively. The first value, and the value in square brackets, correspond
to relative energies (in kJ mol-1, with reference to CS1 with absolute
affinity of 201.2 kJ mol-1) and deformation energies (in kJ mol-1),
respectively.
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The two metal-cationized zwitterionic complexes, ZW3 and
ZW5, are much less stable than CS1. To elucidate the effect of
the phenyl group acting solely as a side chain (not involved in
cation-π binding) in ZW3 on the relative stability of the CS
versus ZW modes, two methyl stabilization reactions13 have been
constructed:

In the above equations, Ala(CS3) and Ala(ZW3) are the charge-
solvation and zwitterionic forms of Na+-alanine complexes, in
the same mode of binding as CS3 and ZW3 (i.e., the Na+ binds
to the carboxylic/carboxylate oxygens), respectively. Both reac-
tions 1 and 2 are exothermic (Figure 2), suggesting that the phenyl
group in phenylalanine stabilizes both the CS3 and ZW3 forms
when compared to toluene (methylbenzene). The higher exother-
micity of reaction 2 indicates that the stabilization effect of the
phenyl group is more significant for ZW3 than CS3. The result
can be rationalized as follows. In the case of CS3, the phenyl
ring helps to stabilize the Na+, possibly due to increased
polarizability of the side chain. On the other hand, for ZW3, apart
from stabilizing the Na+, the more polarizable phenylπ ring also
helps to disperse the charge on NH3

+ at the N-terminus. Given
the difference in chemical softness between -H and -phenyl,14 it
is not surprising that the softer phenyl side chain is playing a
more significant role in stabilizing the charges in the ZW3
complex.

The relative stability for the CS5/ZW5 pair is opposite to that
of the CS3/ZW3 pair. In the presence of cation-π interaction,
the stability of the charge-solvation CS5 conformation is en-
hanced, while the zwitterionic ZW5 conformation is de-stabilized
(Figure 2). The instability of the ZW5 conformation is probably

due to strong electrostatic repulsion among the binding sites. Our
rationalization is based largely on deformation energy consider-
ations: ZW5 has a substantially larger deformation energy (96
kJ mol-1) relative to that of CS5 (24 kJ mol-1). As the CS5/
ZW5 pair is structurally very similar, the difference inEdef is
due to the variation in the magnitude of the electrostatic attractive/
repulsive forces in these two systems. One expects larger
electrostatic repulsion betweenone of the negatively charged
carboxylate oxygens and the electron-rich phenylπ ring in ZW5,
than between the neutral carboxylic acid group and phenylπ ring
in CS5. On this note, we can also understand why a ZW6-like
complex may not exist. To form a ZW6-like complex,both
negatively charged oxygens in the carboxylate group would be
located closely to the electron-rich phenyl group. Hence, theEdef

of a ZW6-like species would be expected to be even larger than
ZW5. This large deformation energy derived from electrostatic
repulsion is likely to dominate in ZW6-like complexes, leading
to greater instability of this zwitterionic conformation.

The roles of the phenyl group now become clear. When the
phenylπ ring is not involved in binding to the cation, it acts as
a “sink” to stabilize the positive charge of both the Na+ and the
NH3

+ at the N-terminus so that the ZW3 conformation is more
stable than CS3. When the phenyl group is involved in binding
with a metal cation like Na+, electrostatic repulsion between the
phenyl group and the negatively charged carboxylate group would,
in fact, destabilize the ZW complexes. Our preliminary results
show that the difference in the ionic sizes (Li+/Na+/K+) does have
some effects on the relative stability of the CS and ZW
conformations. A full analysis of alkali metal cation size effect
on the stability of CS/ZW forms will be reported in due course.

In conclusion, our results suggest that the relative stability of
the CS/ZW forms of metal-cationized amino acids could be greatly
affected if the side chain of the amino acid is involved in the
cation binding. For sodiated phenylalanine, the presence of
cation-π interactions confers greater stability to the charge-
solvation conformations (CS1 and CS5) than the zwitterion ZW3,
and destabilizes ZW5- and ZW6-like conformations. Our pre-
liminary results also indicate that the conclusions derived from
Na+-Phe complexes can be extended to the other aromatic amino
acids (e.g., Tyr and Trp).
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Figure 2. Energy level diagram for sodiated alanine and phenylalanine.
The species in brackets are added to conserve the type and number of
atoms so that all systems can be compared on the same potential surface.

Ala(CS3)+ CH3C6H5 f CS3+ CH4 (1)

Ala(ZW3) + CH3C6H5 f ZW3 + CH4 (2)
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